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Abstract-Analysis of the conductance influence on the temperature regimes of thermally thin shells and 
truss constructions is carried out. For the spatial limit of the conductance influence the conductive length 
is introduced. For the evaluation of the conductive influence the criterion presented by the ratio of the 
characteristic dimension of the shell to the conductive length is proposed. The conductance can be 
neglected when this criterion is much larger than unity. When this relation is not fulfilled the conductance 
contribution is considerable. The evaluation of this criterion on the stage of the problem formulation allow 
determination of the need of the conductance in the heat transfer models. As an example of the application 
of the introduced criterion the development of the heat transfer computational models for airship shells, 

radio telescopes shells and truss constructions could be mentioned. 

1. INTRODUCTION 

DEVELOPMENT of many constructions needs the cal- 
culations of temperature fields in thermally thin shells 
and truss constructions under the radiativexon- 
vective heat transfer conditions [l-4]. As usual these 
problems belong to the area of complex heat transfer 
and in the stage of models formulations it is necessary 
to take into account all the three modes of the heat 
transfer : radiation ; convection ; and conductance. In 
the genera1 case the temperature fields of the thermally 
thin shells and truss constructions can be described 
by the following differential equation which includes 
the surface heat exchange conditions in the form of 
equivalent energy sources distributions : 

6pc$ 6kV2T-h,(T-T,,)-h,(T-T,,) 

-(E, +Ez)aT4+~AS,zz (1) 

where h,, h, are the convective heat transfer co- 
efficients on both surfaces of the shell, T,,, Tz2 are 
the temperature of the convective flows near both 
surfaces of the shell, E,, c2 are the emissivities of the 
coatings for both surfaces of the shell, Z, are the differ- 
ent radiation flux densities and As, are the cor- 
responding absorptivities of the coatings. 

Equation (I) describes the temperature fields in the 
shells when the corresponding Biot numbers are 
small : 

Bi= @l+h*)S<< 1 

k 

and the cross-sectional temperature difference can be 
neglected. 

In the case when the thermal time constant of the 
shell : 

t,i, = Gpcl(h, + I?*) (3) 

is much smaller than the times of variations in heat 

exchange conditions the time derivative in equation 
(1) can be neglected. In this case the temperature field 
follows the time-dependent heat exchange conditions 
without noticeable delays and can be described by the 
stationary equation as : 

GkV*T=h,(T-T,,)+hz(T-T,,) 

+(B, +E,)fJT4-I3As,I,. (4) 

It is evident that under some operating conditions 

the conductive heat transfer can be neglected and 

equation (4) can be further reduced to the algebraic 
or integral one depending on the contribution of the 
radiative heat transfer components. The integral radi- 

ative component arises in equations (l), (4) when the 
radiative heat transfer between the elements of the 
shell is considerable [5]. 

This paper is devoted to the analysis of the con- 

ductance influence on the temperature fields in the 
shells and truss constructions and to the formulation 
of the criterion which could allow one to evaluate 
the contribution of conductive heat transfer at the 
stage of the formulation of heat exchange models. 

2. MODEL STUDY 

Let us consider rhe stationary one-dimensional tem- 

perature field for the case of stepwise radiation flux 
density on the surface of the sheet (Fig. l(a)). The 
nonlinear radiative heat transfer component is sup- 
posed to be small in comparison with the convective 
heat transfer component. This mode1 problem is 
described by the following differential equation : 
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NOMENCLATURE 

1 

AS 

Bi 
c 

h 

k 

H 
I, I,, 
k 
L 
L( 
P 

4, 

* 
4, 

R 
S 
t 

absorptivity, dimensionless 
Biot number, dimensionless 

specific heat [J kg ’ K ‘1 
convective heat transfer coefficient 

[W m ‘K ‘1 

total heat transfer coefficient 
[wm ‘K ‘1 
dimensionless complex 
radiation flux densities [W m ‘1 
conductance coefficient [W m ’ K ‘1 
characteristic dimension, length [m] 
conductive length [m] 
heat transfer perimeter of the element [m] 
heat flux density on the surface 

[Wm~‘K ‘1 
dimensionless value of the heat flux 
density on the surface 
radius of the shell [m] 
cross-sectional area of the clement [m’] 

time variable [s] 

t \,I thermal time constant [s] 
T temperature [K] 

TZ tcmperaturc of the convective flow [K] 

T,I initial temperature [K] 

T, iimit case temperature [K] 

: longitudinal independent variable [ml. 

Greek symbols 
6 thickness of the shell, characteristic 

cross-sectional dimension [m] 

C emissivity, dimensionless 

i dimensionless longitudinal independent 

variable [m] 
0 dimensionless temperature 

4 limit case dimensionless temperature 

00 initial dimensionless temperature 

P density [kg m ‘1 
g Stcfan constant 

T dimensionless time variable 

4” angle independent variable. 

Sk;!;= h,(T-T,*)-Asf,,x(-z) (5) 
Z 

with the boundary conditions 

z + - x : T = T,* + AsI,,/h, 

z--t;c: T= T,* 

where 

(6) 

(7) 

FIG. I (a). Scheme for the model study 

i 
a % 

FIG. 1 (b). Temperature distribution in the sheet and graphi- 
cal interpretation of the conductive length. 

X(--) = 
i 

I, Z30 

0, :<o 

is Heaviside’s unit function modelling the stepwise 
change of the radiation flux density. 

The solution of this model problem is given by 

O(i) = 
1-0.5exp(JBI[) <CO 

0.5exp(-JBi<) ;a0 
(8) 

where 0 = (P- T,*)h,/Asl,, is the dimensionless tem- 

perature, i = Z/S is the dimensionless coordinate and 
Bi = h,b/k is the dimensionless Biot number. 

This solution shows that the temperature dis- 
tribution varies from 0 to I within the limited domain 
near the point of the stepwise increasing of the radi- 
ation flux density (Fig. l(b)). For the dirnensionlcss 
evaluation of the characteristic length of’this domain 
the following approach can be used : 

The geometrical interpretation of this expression is 
shown in Fig. l(b). Substituting equation (8) in (9) 
one can show that the conductivity influence is 
extended from the zero point on the following length : 

which can be interpreted as the conductive length. 
This length presents the spatial limit of the con- 

ductivity influence on the temperature fields in ther- 
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mally thin shells. The heat transfer flux resulting from 
the temperature non-uniformity along the shell is dis- 
sipated by the heat transfer from the shell surfaces on 
the conductive length. In other words two arbitrary 
points of the shell possess a conductive interaction if 
the distance between them does not exceed the intro- 
duced conductive length. If the characteristic dimen- 
sion of the shell is much larger than the conductive 
length, the conductivity influence cannot be taken 
into account and the differential component kV’T can 
be neglected in the heat transfer model. In this case 
the conductance affects the tempe~~ture field only 
along the lines of stepwise changes in heat exchange 
parameters on the shell surfaces. This influence has 
an effect only within the conductive length counted 
from the lines of stepwise changes of heat transfer 
parameters. 

Thus. the need of the conductance mechanism in 
the heat transfer models of thermally thin shells can 
be considered on the basis of the following criterion, 
given by the ratio of the shell characteristic dimension 
to the introduced conductive length : 

L Lh,’ 2 

L, (Era) I” ’ (11) 

If the value of the criterion is much larger than unity 
L,/L(: >> 1 the conductivity contribution can be 
neglected. If this relation is not fulfilled the con- 
ductivity contribution should be taken into account. 
Note the case when this criterion is much smaller 
than the unity L/L<. << I. In this case the conductivity 
contribution is so high that it would make uniform 
the temperature field of the shell held under non- 
uniform heat exchange conditions. 

3. TEMPERATURE FIELDS OF SHELLS 

3. I. Formdution of the problem 
As an example of the conductance influence let us 

consider the temperature fields in the cylindrical and 
spherical shells. The contribution of the conductance 
in the temperature fields can be studied on the basis 
of the equation with the linear approximation of the 
heat transfer conditions : 

^ 
dpr.F;= 6kV’T-h,(T-T,*)+y,(cp) (12) 

where y<(p) is the total surface heat Rux distribution, 
It, = Ir, + h2 is the total convective-radiative heat 
transfer coefficient of both the surfaces of the shell, 
r,* = (h,T,,+hzT,,)/(h,+h2) is the reduced tem- 
perature of the convective flows near both the surfaces 
of the shell, V’ is the Laplacian for the cylindrical and 
spherical shells, respectively, which is given by 

v2 = J_ic 
R2 &p2 

(13) 

The boundary conditions of the problem are written 
as : 

The initial state is given by : 

Tl,- o = 7-w (1.9 

Solution of equations (12)-( 15) for both the shells 
can be obtained by means of eigenfunction expansion 
of the source function in cyuation (12) [6]. To 
present the solutions in compact form one can intro- 
duce the following dimensionless independent vari- 
ables : 

cp’ = q/n, 7 = tk/pc(trR)’ 

and the dimensionless temperature : 

(17) 

3.2. Cylindricul shell 
Using the technique of eigenfunction expansion of 

the source function in the conductivity equation one 
can obtain the following solution for the cylindrical 
shell : 

(18) 

where p,! = 0, 7r(2n- 1)/2 (IZ = 1.. . . , m) are the 
eigenvalues of the corresponding Sturm-Liouvilte 
problem 

Qn = ’ yt(cp’) cos /qp’ cos’ J’,J,~ dcp’ 

are the coefficients of the eigenfunction expansion of 
the dimensionless surface heat flux distribution 

rib(@) = ~,(~P)~f~,(O) 

6," = 00 
I' 

cosp,,cp’d~j 
J 

cos’ /L,,& dqY 
0 0 

are the coefficients of the eigenfunction expansion 
of the dimensionless initial temperature flo = 
(T,- ~~)hs~~~(0) and L = sR is the characteristic 
dimension of the shell. 

For the values 7 >> 1 the expression (18) gives the 
stationary solution : 

where R is the radius of the shells. 



3.3. 7Rc c,rirc~r-ion linlilb 

Now let us anaiysc lhc influence of the conductuncc 
on the tcmpcraturc tic&is of the shcils. In Figs. 3iar 
2nd (b) the distributions of’ the dimcn5ionicss tom- 

This solution has two components. The first one 
porali~~'~ in the shells for the ditYerent \iducs of lhc 
criterion L/L, arc slwwn. For hc sho\cn graphs the 

presents the mean value of the source function. In the dimcnsionlcss surlim heat llux distribution is given 
limit L/Lc + 0 the temperature field of the shell given by the following function : 
by this term is uniform. The second term of the solu- 
tion (19) is given by the infinite series dependent on 
the dimensionless criterion L/L, and takes into 

y,*(cp’) = 
i 

cos n$, 0 < p’ < 0.5 

0. 0.s ,< ‘P’ < I 
(12) 

account the contribution of the conductive heat trans- 

fer in the shell. which corresponds to the case of the direct solar radi- 

Using the technique of the eigenfunction expansion 
of the source function in the conductivity equation 
one can obtain the following solution for the spherical 

shell : 

LI;‘Lf 

pi Q,, e 1 In’,rw+ I)+,: /.fjr 
n’n(n+ I)+ L’!L, 

whcrc 

I d” 
P,,(.u) = 2,,,1, dr” 0’ - 1 ,“I . 

are the Legendre polynomials which are the eigcn- 
functions of the corresponding Sturm Liouvillc 
problem 

~p((~‘)P,,(cos ncp’) sin z(p d(p’ 

are the co&icients of the eigenfunc(ion expansion of 
the dimensionless surface heat Aux distribution 

(, = P~~Sby) ’ 
I,,, 

2 
0 s P,, (cos mp’: sin ncp’ d(p’ 

0 

are the coefficients of the cigenfunction expansion ol 
the dimensionless initial temperature and IA = nR is 
the semicircumferential length of the shell. 

For the values z >> I the expression (20) gives the 
stationary solution 

~)(~~‘) = ; q:ftp’) sin 7~47’ d# 

which includes two components. The first term pre- (b) ? 

sents the mean value of the source function. The 

second term is given by the infinite series dependent 
FOG. 2. Dimensi~n~~ss temperature fields in the shells for 
different values of L/L,-. (a) C~~ind~ical shell ; (b) sphericai 

on the dimensionless criterion L/L, shell. 

(a) 
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ation heating with the maximal value in the point 

cp’ = 0. 
The graphs show that in the limit L/L, + 0 the 

shells are isothermal. Their temperature results from 
the total balance between the fluxes of energy. The 
temperature for this case is given by the first term of 
equations (19) and (21). In this limit the contribution 
of the conductance presented by the infinite series is 
small and can be neglected. For the cylindrical shell 
the temperature in the limit L/L, + 0 is given by 

O,(cp’) = a ‘, T, = rX*++Y(0)/n/2,. (23) 

For the spherical shell the temperature for this oper- 
ating limit is given by 

O,(cp’) = 4- ‘, T, = T,*+q,(o):4/2,. (24) 

For values of the criterion L/L, z I the non-uni- 

formity of the temperature field becomes consider- 
able. The further increase in the criterion L/Lc leads 
to the increasing of the temperature non-uniformity. 
For values of L/L, > IO2 the temperature field 
approaches, and in the limit L/L, + cc, coincides with 
the function : 

cos rup’, L 0 < cp’ < 0.5 
k(cp’) = o 0.5 < cp’ < 1’ (25) 

For this operating limit the temperature field results 
from the local balance between the heat fluxes on 
both surfaces of the shell and is not influenced by the 
conductance. 

So, the completed parametric study of the solutions 
shows that two limit cases take place. For the first one 
the temperature field of the shells can be determined 
from the integral balance of energy fluxes. For the 
second one the temperature field of the shells can be 
determined from the local balance of the surface heat 
flux densities. We carried out evaluations of the cri- 
terion L/Lc which limit the applicability of both the 

limit approximations of the heat transfer process. The 
limit values of L/Lc were obtained from the analysis 
of the following relative differences between the exact 
solutions (19), (21); the approximations (23), (24); 

and (25) : 

(26) 

where T is the exact solution of the problem and T, 
is the approximation of the problem. 

For the characteristic value of the relative difference 
between the exact solutions and the approximations 
the value A = IO ’ was used. For the cylindrical shell 

the following limit values of the criterion L/Lc are 
obtained. For the values L/L, < 5 x 10m2 the tem- 
perature field of the shell can be determined from the 
integral balance of heat fluxes. For values L/L, > 10’ 
the temperature field can be determined from the local 
balance of the surface heat flux densities without 
introducing the conductivity into the model. The rela- 
tive errors of the temperature field approximations do 

not exceed a 1% value for the mentioned relations. 

The problem of the temperature field in the cylindrical 

shells should be formulated in the form of the con- 

ductivity equation for the values of the criterion lying 
within the following interval : 

5x 10 z <L/L, < 102. 

For the case of the spherical shells the integral 

balance of heat fluxes gives a sufficiently accurate 
approximation for the values L/L, < 1.3 x 10 ’ The 
local heat fluxes balance approximation is valid for 
criterion values of L/L, > 8 x IO". The maximum 

error of the approximations does not exceed 1%. The 
temperature field must be considered on the basis of 
the conductivity equation model only for the fol- 

lowing interval of values : 

1.3x10-’ <L/L, <8x 103. 

4. THE TEMPERATURE FIELD MODELS IN 

TRUSS CONSTRUCTIONS 

Let us consider the temperature fields in the truss 
constructions as another important example of appli- 
cability of the introduced criterion. The tempera- 
ture field models of the truss constructions under 
non-uniform heat exchange conditions are of great 
interest for the development of precise radio teie- 
scopes [l, 2, 7, 81. This interest is explained by the 
considerable thermal deformations, resulting from the 

temperature non-uniformity in the truss constructions 
supporting the radio-wave reflectors. These defor- 
mations alter the reflecting surface accuracy and the 
efficiency of the antenna [l]. 

The radio telescopes truss constructions have many 
rod-like conjuncted elements oriented differently in 
space. The antenna truss constructions operate under 
solar irradiation, the infrared radiative fluxes of the 
atmosphere, earth and other neighbouring surfaces. 
Thermal losses occur by convective heat transfer and 
radiation. As a result of the different space orien- 
tations, the mentioned radiative fluxes and convective 
flow, respectively, different heat transfer conditions are 
formed on the surface of the truss elements. The truss 
elements are conjuncted and, thcreforc, conductive 
heat transfer takes place between them through the 
conjuctions. So, at the stage of the formulation of 
the heat transfer problem it is important to know in 
advance the influence of these conductive fluxes on 
the temperature fields of the truss elements. 

For the purpose of the evaluation of the con- 
ductivity contribution in the temperature field models 
let us consider the problem of the conductive inter- 
action between the semi-infinite rods through the con- 
junction, as shown in Fig. 3(a). As a result of the 
different orientations of the rods the different surface 
heat fluxes and convective heat transfer coefficient 
takes place for them. The described model problem 
for the low Biot number rods can be formulated in 
the following two equations : 



3870 

FIG. 3(a). Scheme for the study of conductive interaction 
between the truss elements. 

0 

FIG. 3(b). Dinlensi~!lless tenlper~ture field in the truss 
dcmcnts for the case H < I. 

with the boundary conditions in the point of the con- 
junction 

and with the following conditions in the limit z + z 

where S’ = S/P are the ratios of the cross-sectional 
areas to the heat transfer perimeters of the roads, h’, , 
II: arc the convective heat transfer coefficients for 
both rods, q,, yz are the surface heat flux densities for 
both rods. 

To present the solution more compactly one can 
introduce the following djmcnsiollless independent 
variables : 

- ii =:-I, ,,j’,, ;, = :.‘o, 

and the dil~~cns~ot~less tc~llpc~l[Llrcs 

II, = (I-, -Tz)/?>i</:. 0, = (T,~-T~)h,,(I~. 

The solution of this problem is given by the 
expressions 

where Bi, = h, & ik , . Bi, = h,6>;kz arc the Biot num- 
bers for both rods, H = q~~~~~q~~, is the dimension- 
less complex including heat flux densities and heat 

transfer coefficients. 
In Fig. 3(b) the dimensionless distribution for the 

value H < I is shown. The graph shows that the con- 
ductivity interaction penetrates from the conjunction 

point into the rods on the limited lengths. Beyond 
these lengths the tcmpcratures of the rods are given 
by the values resulting from the surface heat transfer 
balances. For the evaluation of the conductivity inter- 

action lengths expression (9) can bc used. Substituting 
(3 I) and (32) into (9) one can obtain the following 
evaluations : 

d.,., = (ci;k,!h,)l 2 = Lc,, (34) 

(5 T = (h;k2jh2)’ ’ = L,.> (35) 

which coincide completely with the conductive length 
itltroduced for the case of the thermally-thin shells. 

So, the conductivity interaction through the con- 
junction does not penetrate into the rods beyond the 
conductive lengths, expressed through the value ofthe 
ratio of the cross-sectional areas to the heat transfcl 
perimctcrs 6’ = S/P. 

When the conductive lengths are much smaller than 
the geometrical lengths of the elements: 

L,;L,,,2> I. i= l,.... N (36) 

the conductance contribution and the conductive 
interaction between the clemcnts can be neglected in 
the heat transfer model and the te~~peratL~rcs of the 
elements can be approximated by the following cvalu- 

ations : 

T, = TX + y,/h, (37) 

which result from the heat transfer balances on the 
surfaces of the elements. 

fn the case when the relations in equation (36) 
are not fulfilled. the conductive interactions of the 
elements are considerable and the temperatures along 
the elements arc not uniform. In this case the tem- 
perature distribution along the elements can be 
described by the solution of the second order differ- 
ential equations with the equivalent heat sources in 
the following form : 
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Q!(L) = H,+C,iexP(--JW,) 

+C,,exp(-J&i,), i= l,,.., N (38) 

where <, = z,/Si are the longitudinal dimensionless 
coordinates of the elements, Bi, = &hi/ki are the Biot 

numbers of the elements, H, = qih*/hiq* are the 
dimensionless complexes, h*, y* is the pair of charac- 
teristic values. If A*, y* corresponds to the maximal 
value from the series q,lh,, i = I,. . , N, all the dimen- 

sionless temperature distributions lie within the unit 
interval [0, I]. The integration constants C,,, C,, of 
the expression (38) can bc obtained by solving the 
system of the algebraic equations, resulting from the 
substitution of the expressions (38) into the boundary 
conditions for the elements conjunctions in the con- 
sidered truss construction. 

Thus, the question of the inclusion of the con- 
ductivity in the models of truss construction tem- 
porature regimes can also be considered with the help 
of the introduced conductive length and the criterion 
which is given by the ratio of the geometrical lengths 
of the elements to their conductive lengths. 

5. CONCLUSIONS AND SUMMARY 

Many heat transfer problems of the~lally-thin 

shells and truss constructions can be formulated in 

the form of the second order differential conductivity 
equation where the surface heat transfer conditions 
are presented by the equivalent energy sources. This 
approach is valid for the low Biot number shells and 
truss constructions. For some operating conditions 

the conductance contribution in the tenlperature field 
can be neglected. In this case the second order differ- 
ential component kV’T can be neglected in the equa- 
tion for the temperature field which considerably sim- 
plifies the models. The contribution of conductivity in 
the heat transfer problems can be evaluated on the 
basis of the introduced conductive length which limits 
the spatial influence of the conductive heat transfer. 
Physically this characteristic presents the length 
within which the conductive heat transfer flux is dis- 
sipated by the heat exchange fluxes on the surfaces 
of the shell. So. the conductive heat transfer fluxes 
resulting from the non-unifo~ity of temperature in 
the shell have an effect only within the distances of 
the conductive length. 

The introduction of this characteristic allowed us 

to obtain a simple criterion for the consideration of 
the conductivity contribution into the temperature 

fields of the thermally-thin shells and truss con- 

structions. This criterion is presented by the ratio of 
the characteristic geometrical length to the con- 
ductivity length. In cases when this criterion is much 
larger than unity the conductance contribution can be 

neglected. Its influence is considerable only along the 
boundaries of the stepwise changes of heat transfer 
conditions on the surfaces. This influence affects the 
temperature fields only within the distance of the con- 
ductive length. Beyond these distances the tcm- 

perature fields are determined only by heat transfer 
balances on the surfaces. In the case when the above 
mentioned rciation for the introduced criterion is not 
fulfilled the conductance contribution is considerable 
and should bc taken into account. For values of the 
criterion which are much smaller than unity the con- 
ductive heat transfer contribution is so high that cvcn 
under non-uniform heat transfer conditions on the 
surfaces it would make uniform the temperature fields 
of the shells and truss elements. 

The characteristics introduced in this paper allow 
one to estimate the influence of conductive heat trans- 
fer on the temperature fields at the stage oT the for- 

mulation of heat transfer models for the operation of 
thern~~~lly-thin shells and truss c~~nstrLlcti(~ns. 
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LA LONGUEUR CONDUCTIVE EN PROBLEMES DE L’ECHANGE THERMIQUE 
POUR LES ENVELOPPES ET LES CONSTRUCTIONS DES FERMES 

R~sum~~~~~yse de I’influence de conductance aux champs de tempBrature en les enveloppes et Ies 
fermcs, suppos& thermiquement minces, cst fait. Pour le limit spatial de I’influence de conductance la 
longueur conductive est introduite. Pour l’&valuation de la contribution de conductance le critkrium. 
present6 par Ic rapport de dimension characteristique envers la longueur conductive cst propose. La 
conductance est ntgligeable pour les valeurs du critkrium, lesquelles sont beaucoup moins de I’unit6. Pour 
les cas quand cette relation est viol&e la contribution de la conductance est considCrable. L’Cvaluation de 
critCrium proposb permets de diterminer la &cessitC de la conductance aux mod&s de I’tchange thermique 
au stage de la formulation des probl&mes. Pour les examples de l’application du criterium propose on peut 
mentionner le d&elopment des modeles de l’tchange thermique pour les enveloppes de dirigeables. les 

enveloppes et les fermes de radiot6iescopes. 



DIE KONDUCTIVE L.KNGE IN PROBLEME. DER WARMtAR7BEITSWI:ISI: I>I.R 
AUSDE!INEN Iltil.Ll’N llND TR/&GE;Rf:NI: AUFBAI’ 

Zusammenf’assung~ ~-III der Artikel I‘uht-1c1 man &I- Analyst dcr Einllul!, der WllrmelcltfahigkcIr ;in ~CI- 
Formierungdcr Warmenrbeitswcisdcr thermischfcin Hiillcn und ausdehnen tl-&gcrcncn Aufbaudurch. Man 
cinfuhrtct die konduktice Lange. wit die Raumcinfluss dcr W2mclcitfahigkeit bcgrcnzt. Man cinfuhrtet die 
Kriterium, wit dcr Verhaltnis dcr charakteren Raumabmcssung ELI der konduktivcn Lange dorstellcn ist. 
Es is~ moglich dcr EinfluD der Wil-11lclcit(i~higkeit mil<achtcn. Penn dicse Kritcrium xhr kleiner uic Eins 
ist. In dcr Fall. \\eeen dicse Bcdingung ausfuhrl sich nicht. ist die EinflulJ dcr Wiirmeleitlahigkcit wwntlich. 
Die Schartung diese Kritcrium in dcr Stadium Problemestellung erlaubt die EinlluB dcr Wlrmclcitlithipkcit 
scha~zenund und die Fragc urn die Notuendichkcit ihrc Einschliefiung im mod4 der WGmeaustausch 

Der Bcispiel der Anwcndung diesc Krjtcrium and kondu~likc Liingc ist die Erarhcilunp dcr Modcle dcl- 
Wiirmeaustausch der Hiillc dcr Zuftsch\~imlncn~~pparalc. Hullc und tr2igcrcne hulhau dcr radlotclexopc. 

KOHAYKTWBHAR AJIMHA B 3AAA9AX TEI-IJIOBOI-0 PEIKHMA 06OJIOYEK M 
0EPMEHTHbIX KOHCTPYKLIMR 

AHHoTaqnn-AHanu3spy~rcrr BnNIlHUe 'TeWIOIIpOBOnHOCTM Ha TeMnepaTypHbIe nOJIll B TepMHYeCKH 

TOHKAX o6onowax U @pMeHTHbIX KOHcTpyKWSX. B KaYecTBe IIpOCTpaHCTBeHHOrO "penena BnHllHHB 

Te"nO"pOBOLIH&,CTH B ynOMsHyTb,X 3aL,a'iaX TeIIJtOO6MeHa BBOLWTCR KOHnyKTHBHaK DJIHHa. nOny'IeH 

Kpk,TepHi?, BblpaXCeHHldti OTHOUIeHHeM XapaKTepHOrO pa3Mepa K KOHnyKTIlBHOir NIHHe. Ha OCHOBe 

sanas TeIlJIOO6MeHa "OKa3aH0,STO TeIInOIIpOBOLlHOCTblO MOmHO IIpeHe6peYb,eCJM yKa3aHOe OTHOIIIe- 

HUCHaMHOrO MeHb"IeeDAHA"bI. B Cny',ae,KOrAa3TO OTHOLLleHUeHe BbIIIOnHll'ZTCII,BK~aL,Te"nO"pOBOL,- 

HOCTU IlBJIIleTCIl CyEWTBeHHblMOQCHKa naHHOr0 KpMTepMR Ha CTanHH nOCTaHOBKU 3aLta'%H n03BOnReT 

onpe~eneTbHe06xommiym senwiaHy TennonpoBonHocT~ B Moflenax TeMnepaTypHblx noneti.IIpuMeae- 
mie BBefl.CHHOTO KpHTepIiZ4 MOmeT PaCCMaTpMBaTbCS Ha BpkiMepe pa3pa60TKki Moneneii paweTa ren- 

n006MeHHHKOB, o6onoseK panHOTeJleCKOtlOB,aTaK~eC@pMeHTHblXKOHCTpyKUA~. 


