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Abstract—Analysis of the conductance infiuence on the temperature regimes of thermally thin shells and
truss constructions is carried out. For the spacial limit of the conductance influence the conductive length
is introduced. For the evaluation of the conductive influence the criterion presented by the ratio of the
characteristic dimension of the shell to the conductive length is proposed. The conductance can be
neglected when this criterion is much larger than unity. When this relation is not fulfilled the conductance
contribution is considerable. The evaluation of this criterion on the stage of the problem formulation allow
determination of the need of the conductance in the heat transfer models. As an example of the application
of the introduced criterion the development of the heat transfer computational models for airship shells,
radio telescopes shells and truss constructions could be mentioned.

1. INTRODUCTION

DEVELOPMENT of many constructions needs the cal-
culations of temperature fields in thermally thin shells
and truss constructions under the radiative—con-
vective heat transfer conditions [1-4]. As usual these
problems belong to the area of complex heat transfer
and in the stage of models formulations it is necessary
to take into account all the three modes of the heat
transfer : radiation ; convection ; and conductance. In
the general case the temperature fields of the thermally
thin shells and truss constructions can be described
by the following differential equation which includes
the surface heat exchange conditions in the form of
equivalent energy sources distributions:

oT
bpe 5. = SkV2T—hy(T—T.) ~hy(T—T,5)
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where h,, h, are the convective heat transfer co-
efficients on both surfaces of the shell, T,,, T,, are
the temperature of the convective flows near both
surfaces of the shell, ¢,, ¢, are the emissivities of the
coatings for both surfaces of the shell, 7, are the differ-
ent radiation flux densities and As, are the cor-
responding absorptivities of the coatings.

Equation (1) describes the temperature fields in the
shells when the corresponding Biot numbers are
small :

(hy+h,)0
=«

Bi X

1 (2)
and the cross-sectional temperature difference can be
neglected.

In the case when the thermal time constant of the
shell :

ty, = dpc/(h,+h,) (3)

is much smaller than the times of variations in heat
exchange conditions the time derivative in equation
(1) can be neglected. In this case the temperature field
follows the time-dependent heat exchange conditions
without noticeable delays and can be described by the
stationary equation as:

OkVT = h((T—T,)+h(T—T,,)
+(&,+8)0T*—ZAs, 1. (4)

It is evident that under some operating conditions
the conductive heat transfer can be neglected and
equation (4) can be further reduced to the algebraic
or integral one depending on the contribution of the
radiative heat transfer components. The integral radi-
ative component arises in equations (1), (4) when the
radiative heat transfer between the elements of the
shell is considerable [5].

This paper is devoted to the analysis of the con-
ductance influence on the temperature fields in the
shells and truss constructions and to the formulation
of the criterion which could allow one to evaluate
the contribution of conductive heat transfer at the
stage of the formulation of heat exchange models.

2. MODEL STUDY

Let us consider the stationary one-dimensional tem-
perature field for the case of stepwise radiation flux
density on the surface of the sheet (Fig. 1(a)). The
nonlinear radiative heat transfer component is sup-
posed to be small in comparison with the convective
heat transfer component. This model problem is
described by the following differential equation :
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NOMENCLATURE
As absorptivity, dimensionless fon thermal time constant {s]
Bi Biot number, dimensionless T temperature {K]
¢ specific heat [Jkg™' K '] T, temperature of the convective flow [K}
h convective heat transfer coefficient Ty initial temperature {K}
Wm 2K T, limit case temperature [K]
hy total heat transfer coefficient = longitudinal independent variable [m].
Wm *K ']
H dimensionless complex Greek symbols
I, 1, radiation flux densities [Wm ] o thickness of the shell, characteristic
k conductance coefficient [Wm ' K '] cross-sectional dimension [m]
L characteristic dimension, length [m] & emissivity, dimensionless
L conductive length [m] { dimensionless longitudinal independent
P heat transfer perimeter of the element [m] variable [m]
ds heat flux density on the surface 0 dimensionless temperature
Wm 2K th limit case dimensionless temperature
q* dimensionless value of the heat flux 04 initial dimensionless temperature
density on the surface P density [kgm ]
R radius of the shell [m] o Stefan constant
S cross-sectional area of the clement {m~] T dimensionless time variable
t time variable [s] @ angle independent variable.

2

_a°r
Ok o = h({T=T2) = Aslyx(=2) (5)

with the boundary conditions

> —oo: T=TF+Asly/h, (6)
oo T=TF )
where
A
,l l l l l h(T -T.)
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FiG. 1(a). Scheme for the model study.

A
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T=Ta"+ Asly A
8=1 N

T=Td
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g 4

F1G. i(b). Temperature distribution in the sheet and graphi-
cal interpretation of the conductive length.

) = 1, z=0
9=, <0
is Heaviside’s unit function modelling the stepwisc
change of the radiation flux density.
The solution of this model problem is given by

) 1-0.5exp(/Bil) (<0
0 = 0.5 exp(—\/Bi O <=0

where 0 = (T—T})h,/Asl, is the dimensioniess tem-
perature, { = z/J is the dimensionless coordinate and
Bi = h,o/k is the dimensionless Biot number.

This solution shows that the temperature dis-
tribution varies from 0 to 1 within the limited domnain
near the point of the stepwise increasing of the radi-
ation flux density (Fig. 1(b)). For the dimensionlcss
evaluation of the characteristic length of this domain
the following approach can be used:

®)

O 0o~ ()1 s

L= C 9

0 do @
ddie

The geometrical interpretation of this expression is
shown in Fig. 1(b). Substituting equation (8) in (9)
one can show that the conductivity influence is
extended from the zero point on the following length

ko
Le= h

which can be interpreted as the conductive length.
This length presents the spacial limit of the con-
ductivity influence on the temperature fields in ther-

(10)
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mally thin shells. The heat transfer flux resulting from
the temperature non-uniformity along the shell is dis-
sipated by the heat transfer from the shell surfaces on
the conductive length. In other words two arbitrary
points of the shell possess a conductive interaction if
the distance between them does not exceed the intro-
duced conductive length. If the characteristic dimen-
sion of the shell is much larger than the conductive
length. the conductivity influence cannot be taken
into account and the differential component AV*T can
be neglected in the heat transfer model. In this case
the conductance affects the temperature field only
along the lines of stepwise changes in heat exchange
parameters on the shell surfaces. This influence has
an effect only within the conductive length counted
from the lines of stepwise changes of heat transfer
parameters.

Thus, the need of the conductance mechanism in
the heat transfer models of thermally thin shells can
be considered on the basis of the following criterion,
given by the ratio of the shell characteristic dimension
to the introduced conductive length:

L L ()

If the value of the criterion is much larger than unity
L/Ls>» 1 the conductivity contribution can be
neglected. If this relation is not fulfilled the con-
ductivity contribution should be taken into account.
Note the case when this criterion is much smaller
than the unity L/L. « 1. In this case the conductivity
contribution is so high that it would make uniform
the temperature field of the shell held under non-
uniform heat exchange conditions.

3. TEMPERATURE FIELDS OF SHELLS

3.1. Formulation of the problem

As an example of the conductance influence let us
consider the temperature fields in the cylindrical and
spherical shells. The contribution of the conductance
in the temperature fields can be studied on the basis
of the equation with the linear approximation of the
heat transfer conditions:

cT ,
(Sp('%[— = VT —h(T=TH +q.(0)  (12)
where ¢.(@) is the total surface heat flux distribution,
h,=h,+h, is the total convective-radiative heat
transfer coefficient of both the surfaces of the shell,
T =(h T, +h,T,,)/(h;+h;) is the reduced tem-
perature of the convective flows near both the surfaces
of the shell, V? is the Laplacian for the cylindrical and
spherical shells, respectively, which is given by
18 1 /37 é
oY LIPS (. — 13
v R? d¢*’ v R? (6(;9“ +Ctg¢)ﬁ(p> 13

where R is the radius of the shells.
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The boundary conditions of the problem are written
as:

orT or
= =0, —| =0 (14)
P iy =0 0P lp=n
The initial state is given by:
T}, - o= To. (15)

Solution of equations (12)—(15) for both the shells
can be obtained by means of eigenfunction expansion
of the source function in cquation (12) [6]. To
present the solutions in compact form one can intro-
duce the following dimensionless independent vari-
ables:

¢ =@/n, T=thlpc(nR)? (16)

and the dimenstonless temperature:

amn

3.2. Cylindrical shell

Using the technique of eigenfunction expansion of
the source function in the conductivity equation one
can obtain the following solution for the cylindrical
shell:

o L/LE
.0 ,,.2..‘0 i+ L7/ Le
L2[;Lé 2 242
04—~y s R S T Y g ., .
+[ " ;1,7+L“/L5Q 3 ¢ oS 1@
(18)
where p, =0, z(2n—1)/2 (n=1,..., o) are the

eigenvalues of the corresponding Sturm-Liouville
problem

i i
Q. =J q(9") cos " dg’ | J cos” f1,¢" dop’
0 | 0

are the coefficients of the eigenfunction expansion of
the dimensionless surface heat flux distribution

¢¥@") = q{p)/q,(0)
1 it
.0 = O(Jj‘ cos i, ¢" dep’ / J cos? " do’
0 [ Jo

are the coefficients of the eigenfunction expansion
of the dimensionless initial temperature 6, =
(To—THh,/q.(0) and L= =R is the characteristic
dimension of the shell.

For the values © > 1 the expression (18) gives the
stationary solution:

He) = L gX@"y do’

LL n ,
L@ e a1 o {5(2”‘ ”‘P}

n=1
(19)
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where

i
Q,=12 f qX(e) cos {T; (2n~l>«>’} dy”.
1 - ,

This solution has two components. The first one
presents the mean value of the source function. In the
limit L/ L — 0 the temperature field of the shell given
by this term is uniform. The second term of the solu-
tion (19) is given by the infinite series dependent on
the dimensionless criterion L/l and takes into
account the contribution of the conductive heat trans-
fer in the shell.

3.3. Spherical shell

Using the technique of the eigenfunction expansion
of the source function in the conductivity equation
one can obtain the following solution for the spherical
shell :

. L::"L(;
Hr o)y = s, RS ¢
(.97 Z {n‘n(n—H)—FL'ﬁL;Q

Rt

L3LE 1 . L
0. — . { £ Lo [t D27 L
+ [ ni} T(_n(l’l‘l" ])+LV/LE~ QnJC }
x P leos ') (20)
where
dfl S
P,(x) [(x"=1)"]

T 2t dy

are the Legendre polynomials which are the eigen-
functions of the corresponding Sturm- Liouville
problem

QCa+Drm ! ) X
Q, = N ) 1 g¥@ )P, {cos ng'} sin mo’ dg’
0

are the cocfficients of the eigenfunction expansion of
the dimensionless surface heat flux distribution

2n+)n : )
( 5 ) ()(,J P,icos e’} sin wp’ do’
{1

()un =

are the coefficients of the eigenfunction expansion of
the dimensionless initial temperature and L = R is
the semicircumferential length of the shell.

For the values © » 1 the expression (20) gives the
stationary solution

T

f
o) = :;j g () sin g’ do’
- Jh

1312

S )
i+ D+ L7 LE D

LYo,

=1

P, {cos np’}

which includes two components. The first term pre-
sents the mean value of the source function. The
second term is given by the infinite series dependent
on the dimensionless criterion L/L.

BatM and (3 A. Lot CHey

3.4, The criterion limits

Now let us analyse the influence of the conductance
on the temperature ficlds of the shells. In Figs. 2{a}
and (b) the distributions of the dimensioniess tem-
perature in the shells for the different values of the
criterion L;L. are shown. For the shown graphs the
dimensionless surface heat flux distribution s given
by the following function:

cosmg’, 0@ <03

g ) = {0

which corresponds to the case of the direct solar radi-
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F1G. 2. Dimensionless temperature fields in the shells for
different values of L/L.. {a) Cylindrical shell; {b) spherical
shell.
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ation heating with the maximal value in the point
¢ =0.

The graphs show that in the limit L/L.— 0 the
shells are isothermal. Their temperature results from
the total balance between the fluxes of energy. The
temperature for this case is given by the first term of
cquations (19) and (21). In this limit the contribution
of the conductance presented by the infinite series is
small and can be neglected. For the cylindrical shell
the temperature in the limit L/L. — 0 is given by

01(<P/) =n I’ ’rl = T1*+q\(0)/nhs

For the spherical shell the temperature for this oper-
ating limit is given by

O(e) =47",

For values of the criterion L/Lc ~ | the non-uni-
formity of the temperature field becomes consider-
able. The further increase in the criterion L/L. leads
to the increasing of the temperature non-uniformity.
For values of L/L-> 107 the temperature field
approaches, and in the limit /L — oo, coincides with
the function:

cosmp’, 0< o <0.5
0.9 = 9, 05<g <1’

(23)

T\ = T} +4,(0)/4h. (24

(25)

For this operating limit the temperature field results
from the local balance between the heat fluxes on
both surfaces of the shell and is not influenced by the
conductance.

So, the completed parametric study of the solutions
shows that two limit cases take place. For the first one
the temperature field of the shells can be determined
from the integral balance of energy fluxes. For the
second one the temperature field of the shells can be
determined from the local balance of the surface heat
flux densities. We carried out evaluations of the cri-
terion L/L. which limit the applicability of both the
limit approximations of the heat transfer process. The
limit values of L/L were obtained from the analysis
of the following relative differences between the exact
solutions (19), (21); the approximations (23), (24);
and (25):

-1,

where T is the exact solution of the problem and T,
is the approximation of the problem.

For the characteristic value of the relative difference
be:ween the exact solutions and the approximations
the value A = 107 was used. For the cylindrical shell
the following limit values of the criterion L/L. are
obtained. For the values L/L- < 5x 1072 the tem-
perature field of the shell can be determined from the
integral balance of heat fluxes. For values L/L. > 10?
the temperature field can be determined from the local
balance of the surface heat flux densities without
introducing the conductivity into the model. The rela-
tive errors of the temperature field approximations do
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not exceed a 1% value for the mentioned relations.
The problem of the temperature field in the cylindrical
shells should be formulated in the form of the con-
ductivity equation for the values of the criterion lying
within the following interval:

5x107% < LiLe < 10°,

For the case of the spherical shells the integral
balance of heat fluxes gives a sufficiently accurate
approximation for the values L/L- < 1.3 x 107" The
local heat fluxes balance approximation is valid for
criterion values of L/Lc > 8x10°. The maximum
error of the approximations does not exceed 1%. The
temperature field must be considered on the basis of
the conductivity equation model only for the fol-
lowing interval of values:

13x107" < LiLe < 8x 107,

4. THE TEMPERATURE FIELD MODELS IN
TRUSS CONSTRUCTIONS

Let us consider the temperature fields in the truss
constructions as another important example of appli-
cability of the introduced criterion. The tempera-
ture field models of the truss constructions under
non-uniform heat exchange conditions are of great
interest for the development of precise radio tele-
scopes [1, 2, 7, 8]. This interest is explained by the
considerable thermal deformations, resulting from the
temperature non-uniformity in the truss constructions
supporting the radio-wave reflectors. These defor-
mations alter the reflecting surface accuracy and the
efficiency of the antenna [1].

The radio telescopes truss constructions have many
rod-like conjuncted clements oriented differently in
space. The antenna truss constructions operate under
solar irradiation, the infrared radiative fluxes of the
atmosphere, earth and other neighbouring surfaces.
Thermal losses occur by convective heat transfer and
radiation. As a result of the different space orien-
tations, the mentioned radiative fluxes and convective
flow, respectively, different heat transfer conditions are
formed on the surface of the truss clements. The truss
elements are conjuncted and, therefore, conductive
heat transfer takes place between them through the
conjuctions. So, at the stage of the formulation of
the heat transfer problem it is important to know in
advance the influence of these conductive fluxes on
the temperature fields of the truss elements.

For the purpose of the evaluation of the con-
ductivity contribution in the temperature field models
let us consider the problem of the conductive inter-
action between the semi-infinite rods through the con-
junction, as shown in Fig. 3(a). As a result of the
different orientations of the rods the different surface
heat fluxes and convective heat transfer coefficient
takes place for them. The described model problem
for the low Biot number rods can be formulated in
the following two equations:
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FiG. 3(a). Scheme for the study of conductive interaction
between the truss elements.

8=1 8
He (Bil8is) "
1+ (BorfBiy)"?
8=H
Zz U Z'f

Fic. 3{b). Dimensionless temperature field in the truss
clements for the case H < 1.

Lo dT

5k, d_; =W (T, =T)—q.. 0<z, < 27
—1

4T,

o4k, d"z_ =T —T)—¢.. 0<% (28)

with the boundary conditions in the point of the con-

junction
, dT d7,|
Ttk:-<)=72¥;\.—<)~ I] = K
- it

il - 5
dz, dz, L:, o (29)

and with the following conditions in the limit = —» =

dT, dT-

tod
Iy ok <2

={)

(30)

where ¢ = §/P are the ratios of the cross-sectional
areas to the heat transfer perimeters of the roads, 47,
iy are the convective heat transfer coefficients for
both rods, ¢,, ¢ are the surface heat flux densities for
both rods.

To present the solution more compactly one can
introduce the following dimensionless independent
variables

Baum and O. A, LOUCHLY

Oy 0L (s = 2a00
and the dimensionless temperatures

0y =AT,~Tphsig.. 0, =(T.~T)Hh)q,.

The solution of this problem is given by the
expressions

(1—H)BiY* Bi,

IR LT T
Gico) = H+ 1+ Bl B

oxp (—/Bii )
30

0,(8) =1+ Lsexp (—y/Biy{y)  (32)

H—1
14 BT B,
where Bi, = k8" /k ., Bi- = h.8%/k, arc the Biot num-
bers for both rods, H = ¢,#./g.h, is the dimension-
less complex including heat flux densities and heat
transfer coefficients.

In Fig. 3(b) the dimensionless distribution for the
value H < | is shown. The graph shows that the con-
ductivily interaction penetrates from the conjunction
point into the rods on the limited lengths. Beyond
these lengths the temperatures of the rods are given
by the values resulting from the surface heat transfer
balances. For the evaluation of the conductivity inter-
action lengths expression (9) can be used. Substituting
{31) and {32) into (9) one can obtain the following
evaluations:

Opy = (8K jh) = Le, (34)

dr2 = (85K fhy) "2 = L, (35)
which coincide completely with the conductive length
introduced for the case of the thermally-thin shells.
So, the conductivity interaction through the con-
junction does not penetrate into the rods beyond the
conductive lengths, expressed through the value of the
ratio of the cross-sectional areas to the heat transfer
perimeters & = S/P.

When the conductive lengths are much smaller than
the geometrical lengths of the elements:

LiLe» 1 i=1,....N (36)

the conductance contribution and the conductive
interaction between the elements can be neglected in
the heat transfer model and the temperatures of the
elements can be approximated by the following evalu-
ations:

Tr = T‘A+‘1U”’V‘ (37)

which result from the heat transfer balances on the
surfaces of the elements.

In the case when the relations in cquation (36)
are not fulfilled, the conductive interactions of the
clements are considerable and the temperatures along
the elements are not uniform. In this case the tem-
perature distribution along the elements can be
described by the solution of the sccond order differ-
ential equations with the equivalent heat sources in
the following form:
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048) = Hi+Cy exp(—/Bi. ()

+Cyexp(—/Bil), i=1,...,N (38)

where {, = z;/8; are the longitudinal dimensionless
coordinates of the elements, Bi; = d:h;/k; are the Biot
numbers of the elements, H,= ¢h*/hq* are the
dimensionless complexes, A*, ¢* is the pair of charac-
teristic values. If #%, g* corresponds to the maximal
value from the series ¢,/ i = 1,..., N, all the dimen-
sionless temperature distributions lie within the unit
interval [0, 1]. The integration constants C,;, C,, of
the expression (38) can be obtained by solving the
system of the algebraic equations, resulting from the
substitution of the expressions (38) into the boundary
conditions for the elements conjunctions in the con-
sidered truss construction.

Thus, the question of the inclusion of the con-
ductivity in the models of truss construction tems-
perature regimes can also be considered with the help
of the introduced conductive length and the criterion
which is given by the ratio of the geometrical lengths
of the elements to their conductive lengths.

5. CONCLUSIONS AND SUMMARY

Many heat transfer problems of thermally-thin
shells and truss constructions can be formulated in
the form of the second order differential conductivity
cquation where the surface heat transfer conditions
are presented by the equivalent cnergy sources. This
approach is valid for the low Biot number shells and
truss constructions. For some operating conditions
the conductance contribution in the temperature field
can be neglected. In this case the second order differ-
ential component £V?T can be neglected in the equa-
tion for the temperature field which considerably sim-
plifies the models. The contribution of conductivity in
the heat transfer problems can be evaluated on the
basis of the introduced conductive length which limits
the spatial influence of the conductive heat transfer.
Physically this characteristic presents the length
within which the conductive heat transfer flux is dis-
sipated by the heat exchange fluxes on the surfaces
of the shell. So. the conductive heat transfer fluxes
resulting from the non-uniformity of temperature in
the shell have an effect only within the distances of
the conductive length.

The introduction of this characteristic allowed us
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to obtain a simple criterion for the consideration of
the conductivity contribution into the temperature
fields of the thermally-thin shells and truss con-
structions. This criterion is presented by the ratio of
the characteristic geometrical length to the con-
ductivity length. In cases when this criterion is much
Jarger than unity the conductance contribution can be
neglected. Its influence is considerable only along the
boundaries of the stepwise changes of heat transfer
conditions on the surfaces. This influence affects the
temperature fields only within the distance of the con-
ductive length. Beyond these distances the tem-
perature fields are determined only by heat transfer
balances on the surfaces. In the case when the above
mentioned relation for the introduced criterion is not
fulfilled the conductance contribution is considerable
and should be taken into account. For values of the
criterion which are much smaller than unity the con-
ductive heat transfer contribution ts so high that cven
under non-uniform heat transfer conditions on the
surfaces it would make uniform the temperature ficlds
of the shells and truss elements.

The characteristics introduced in this paper allow
one to estimate the influence of conductive heat trans-
fer on the temperature fields at the stage of the for-
mulation of heat transfer models for the operation of
thermally-thin shells and truss constructions.
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LA LONGUEUR CONDUCTIVE EN PROBLEMES DE [’ECHANGE THERMIQUE
POUR LES ENVELOPPES ET LES CONSTRUCTIONS DES FERMES

Résumé—L analyse de I'influence de conductance aux champs de température en les enveloppes et les
fermes, supposés thermiquement minces, cst fait. Pour le limit spacial de Uinfluence de conductance la
longueur conductive est introduite. Pour 1'évaluation de la contribution de conductance le critérium,
presenté par le rapport de dimension characteristique envers la longueur conductive est proposé. La
conductance est négligeable pour les valeurs du critérium, lesquelles sont beaucoup moins de P'unité. Pour
les cas quand cette relation est violée la contribution de la conductance est considérable. L’évaluation de
critérium proposé permets de déterminer la nécessité de la conductance aux modéles de 'échange thermique
au stage de la formulation des problémes. Pour les examples de 'application du critérium proposé on peut
mentionner le dévelopment des modéles de échange thermique pour les enveloppes de dirigeables, les
enveloppes et les fermes de radiotélescopes.
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DIE KONDUCTIVE LANGE IN PROBLEME DER WARMEARTBEITSWEISE DER
AUSDEHNEN HULLEN UND TRAGERENI AUFBAU

Zusammenfassung—In der Artikel fuhrtet man der Analyse der EinfluBl der Wirmeleitfahigkeit an der
Formierung der Wiirmearbeitsweis der thermischfcin Hiillen und ausdehnen trdgerenen Aufbau durch. Man
cinfuhrtet dic konduktive Linge, wic dic Raumeinfluss der Wirmeleittahigkeit begrenzt. Man einfuhrtet die
Kriterium, wic der Verhaltnis der charakteren Raumabmessung zu der konduktiven Linge darstellen ist.
Es ist moglich der Einflul der Wirmelcitfahigkeit milachten. wenn diese Kriterium zehr kleiner wie Eins
ist. In der Fall. ween dicse Bedingung ausfuhrt sich nicht. ist die Einflull der Wérmeleitfahigkeit wesentlich.
Die Schartung diese Kriterium in der Stadium Problemestellung erlaubt die Einflufl der Wirmeleitfahigkeit
schatzenund und dic Frage um dic Notwendichkeit ihre EinschlieBung im model der Wiirmeaustausch.
Der Beispiel der Anwendung diese Kriterium and konductive Linge ist die Erarbeitung der Modele der
Wiirmeaustausch der Hiille der Zuftschwimmenapparate, Hulle und triigerene Aufbau der radiotelescope.

KOHIOYKTUBHAS JJIMHA B 3AJAYAX TEITJIOBOI'O PEXXUMA OBOJIOYEK U
®EPMEHTHBIX KOHCTPYKLIUN

AHHOTS[IH“*AHZ‘UIH:inyeTCﬂ BJIMSIHHME TEIJIONPOBOJHOCTH HA TEMHOCPATYPHBIE IOJIA B TEPMHUYECKH
TOHKHX 00oJIouKax M Q)CPMCHTHBIX KOHCTPYKUHAX. B xauecrse IPOCTPAHCTBEHHOI O Mpeaeiia BIIHAHASA
TEIVIONPOBOAHAOCTH B YNIOMSIHYTBIX 3a/adax TennooOMeHa BBOOUTCH KOHOYKTHBHAS [IMHA. HOJ’ly‘{eH
KpHTCpI/Iﬁ, Bblpa)KCHHblﬁ OTHOLUCHHEM XAPAKTEPHOIo pasMepa K KOHHyKTHBHOﬁ anuge. Ha ocHoBe
3agav Ten1000MeHa MOKa3aHo, 4YTO TEIMJIONPOBOAHOCTBIO MOXHO npeHere!{b, €CJIM YKa3aHO¢ OTHOLIE-
HHE HAMHOTO MEHbILE eIHHHUMLL. B ciydae, Korja 3TO OTHOUWICHHE HE BBINIOJIHACTCA, BKJ1aA TENIOMPOBO-
HOCTH ABJIACTCA CYHICCTBECHHDBIM. OueHka JaHHOTO KpHUTCPpUA HA CTaAHH MOCTAHOBKH 3a1d4H NO3BOJIACT
OonpeacinTh HGO6X0)1PIM)’K) BEJIHYHHY TEIJIONPOBOAHOCTHA B MOACJIAX TEMNEPATYPHBIX noJiei. anMeHC-
HHE BBEACHHOIO KPHTEPHUS MOXET pacCMaTpHBATLCS HA BpHUMEpC pa3pa60T|m mopenen pacyera Ten-
J100OMEHHHMKOB, 000104EK PAannOTENECKONOB, a4 TAKXKE q)epMeHTHbIX KOHCprKHHﬁ.



